Figure 1. Thermal expansion: plastic versus metal.
Issues with traditional clamps and supports
Issues can arise when using traditional pipe and valve support products for plastic piping systems. First, many clamps are designed to hold the pipe firmly or do not prevent an installer from overtightening against the pipe. This can stress the pipe at time of installation and later when it needs to move naturally (see Figure 2). Second, many clamps have sharp metal edges that can easily come in contact with the pipe and cause damage. Third, traditional pipe guides, which do allow movement, do not provide proper pipe support during an earthquake. The pipe can freely move side to side (perpendicular to the axis) and become damaged. This also requires engineers to especially consider the supporting structure beneath the pipe guide because of large forces that would be transferred during an earthquake. Finally, valve manufacturers typically recommend that valves are independently supported in a piping system; in practice, installers often clamp them down as fixed points. The valves then become unintentional fixed points where stresses will concentrate when the pipe cannot move naturally. All of these issues contribute to stress concentrations that increase the risk of premature failures and leaks.
Solution
Improper piping system support can result in premature failures and subsequent damage leading to leaks and expensive downtime for repairs or replacement. New solutions are available to resolve this, such as a pipe and valve support system that has been especially designed to eliminate the stress transfer to pipe due to thermal expansion, installation or seismic events. This system (see Figure 3) includes pipe guides in sizes ½ inch to 8 inches (iron pipe size [IPS] and metric sizes) and valve supports in sizes 3/8 inch to 2 inches. It can be used with any thermoplastic piping system material (PP, PVDF, HDPE, PVC, CPVC, ABS, etc.), as long as it is IPS (inch) or metric size.
Pipe guides
The pipe guides are designed to have a 3-millimeter (mm) gap (oversized) between the plastic insert and the pipe it supports. Molded from low-friction UV-resistant HDPE, the design allows the piping to slide easily and freely in the axial direction with absolute minimal stress and wear during each thermal expansion cycle. An outer metal hoop provides additional strength, but the design of the insert does not allow the pipe to touch the metal hoop. The design also prevents overtightening against the pipe; fastening down the outer metal hoop does not cause the insert to squeeze the pipe.